Minggu, 18 Desember 2011
Kamis, 01 Desember 2011
Sabtu, 26 November 2011
Kamis, 24 November 2011
youtube
ingin lihat video band seperti linkin park , distrubed , S.O.A.D , dan slank kunjungi alamat ini
Sabtu, 19 November 2011
Dasar-dasar Pneumatik
Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbangan. Perkataan pneumatik berasal bahasa Yunani “ pneuma “ yang berarti “napas” atau “udara”. Jadi pneumatik berarti terisi udara atau digerakkan oleh udara mampat. Pneumatik merupakan cabang teori aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai dan sebagainya, tetapi juga aksi dan penggunaan udara mampat.
Pneumatik menggunakan hukum-hukum aeromekanika, yang menentukan keadaan keseimbangan gas dan uap (khususnya udara atmosfir) dengan adanya gaya-gaya luar (aerostatika) dan teori aliran (aerodinamika). Pneumatik dalam pelaksanaan teknik udara mampat dalam industri merupakan ilmu pengetahuan dari semua proses mekanik dimana udara memindahkan suatu gaya atau gerakan. Jadi pneumatik meliputi semua komponen mesin atau peralatan, dalam mana terjadi proses-proses pneumatik. Dalam bidang kejuruan teknik pneumatik dalam pengertian yang lebih sempit lagi adalah teknik udara mampat (udara bertekanan).
Komponen-komponen Pneumatik
Komponen pneumatik beroperasi pada tekanan 8 s.d. 10 bar, tetapi dalam praktik dianjurkan beroperasi pada tekanan 5 s.d. 6 bar untuk penggunaan yang ekonomis.
Beberapa bidang aplikasi di industri yang menggunakan media pneumatik dalam hal penangan material adalah sebagai berikut :
a. Pencekaman benda kerja
b. Penggeseran benda kerja
c. Pengaturan posisi benda kerja
d. Pengaturan arah benda kerja
Penerapan pneumatik secara umum :
a. Pengemasan (packaging)
b. Pemakanan (feeding)
c. Pengukuran (metering)
d. Pengaturan buka dan tutup (door or chute control)
e. Pemindahan material (transfer of materials)
f. Pemutaran dan pembalikan benda kerja (turning and inverting of parts)
g. Pemilahan bahan (sorting of parts)
h. Penyusunan benda kerja (stacking of components)
i. Pencetakan benda kerja (stamping and embosing of components)
Susunan sistem pneumatik adalah sebagai berikut :
a. Catu daya (energi supply)
b. Elemen masukan (sensors)
c. Elemen pengolah (processors)
d. Elemen kerja (actuators)
1.1 Alasan Pemakaian Pneumatik
Persaingan antara peralatan pneumatik dengan peralatan mekanik, hidrolik atau elektrik makin menjadi besar. Dalam penggunaannya sistem pneumatik diutamakan karena beberapa hal yaitu :
a. paling banyak dipertimbangkan untuk beberapa mekanisasi,
b. dapat bertahan lebih baik terhadap keadaan-keadaan tertentu
Sering kali suatu proses tertentu dengan cara pneumatik, berjalan lebih rapi (efisien) dibandingkan dengan cara lainnya. Contoh :
1). Palu-palu bor dan keling pneumatik adalah jauh lebih baik dibandingkan dengan perkakas-perkakas elektrik serupa karena lebih ringan, lebih ada kepastian kerja dan lebih sederhana dalam pelayanan.
2). Pesawat-pesawat pneumatik telah mengambil suatu kedudukan monopoli yang penting pada :
a). rem-rem udara bertekanan untuk mobil angkutan dan gerbong-gerbong kereta api, alat-alat angkat dan alat-alat angkut.
b). pistol-pistol ( alat cat semprot, mesin-mesin peniup kaca, berbagai jenis penyejukan udara, kepala-kepala asah kecepatan tinggi ).
Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau lebih baik pembatasan-pembatasan pada penggunaannya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat.
1.2 Keuntungan Pemakaian Pneumatik
a. Merupakan media/fluida kerja yang mudah didapat dan mudah diangkut :
1). Udara dimana saja tersedia dalam jumlah yang tak terhingga.
2). Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfir, sistem elektrik dan hidrolik memerlukan saluran balik.
3). Udara bertekanan dapat diangkut dengan mudah melalui saluran-saluran dengan jarak yang besar, jadi pembuangan udara bertekanan dapat dipusatkan dan menggunakan saluran melingkar semua pemakai dalam satu perusahaan dapat dilayani udara bertekanan dengan tekanan tetap dan sama besarnya. Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disediakan dimana saja dalam perusahaan.
b. Dapat disimpan dengan mudah :
1). Sumber udara bertekanan ( kompresor ) hanya menyerahkan udara bertekanan kalau udara bertekanan ini memang digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.
2). Pengangkutan ke dan penyimpanan dalam tangki-tangki penampung juga dimungkinkan.
3). Suatu daur kerja yang telah dimulai selalu dapat diselesaikan, demikian pula kalau penyediaan listrik tiba-tiba dihentikan.
c. Bersih dan kering :
1). Udara bertekanan adalah bersih. Kalau ada kebocoran pada saluran pipa, benda-benda kerja maupun bahan-bahan disekelilingnya tidak akan menjadi kotor.
2). Udara bertekanan adalah kering. Bila terdapat kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik minyak dansebagainya.
3). Dalam industri pangan , kayu , kulit dan tenun serta pada mesin-mesin pengepakan hal yang memang penting sekali adalah bahwa peralatan tetap bersih selama bekerja.
Sistem pneumatik yang bocor bekerja merugikan dilihat dari sudut ekonomis, tetapi dalam keadaan darurat pekerjaan tetap dapat berlangsung. Tidak terdapat minyak bocoran yang mengganggu seperti pada sistem hidrolik.
d. Tidak peka terhadap suhu
1). Udara bersih ( tanpa uap air ) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada nilai-nilai yang rendah, jauh di bawah titik beku ( masing-masing panas atau dingin ).
2). Udara bertekanan juga dapat digunakan pada tempat-tempat yang sangat panas, misalnya untuk pelayanan tempa tekan, pintu-pintu dapur pijar, dapur pengerasan atau dapur lumer.
3). Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri-industri baja atau bengkel-bengkel tuang (cor).
e. Aman terhadap kebakaran dan ledakan
1). Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan.
2). Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan, alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.
f. Tidak diperlukan pendinginan fluida kerja
1). Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya. Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.
g. Rasional (menguntungkan)
1). Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi.
2). Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan komponen-komponen peralatan hidrolik.
h. Kesederhanaan (mudah pemeliharaan)
1). Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
2). Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, cakera bubungan, pegas, poros sekerup dan roda gigi.
3). Konstruksinya yang sederhana menyebabkan waktu montase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat direparasi sendiri, yaitu oleh ahli teknik, montir atau operator setempat.
4). Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.
i. Sifat dapat bergerak
1). Selang-selang elastik memberi kebebasan pindah yang besar sekali dari komponen pneumatik ini.
j. Aman
1). Sama sekali tidak ada bahaya dalam hubungan penggunaan pneumatik, juga tidak jika digunakan dalam ruang-ruang lembab atau di udara luar. Pada alat-alat elektrik ada bahaya hubungan singkat.
k. Dapat dibebani lebih ( tahan pembebanan lebih )
Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih. Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
1). Pada pembebanan lebih alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.
2). Suatu jaringan udara bertekanan dapat diberi beban lebih tanpa rusak.
3). Silinder-silinder gaya tak peka pembebanan lebih dan dengan menggunakan katup-katup khusus maka kecepatan torak dapat disetel tanpa bertingkat.
l. Jaminan bekerja besar
Jaminan bekerja besar dapat diperoleh karena :
1). Peralatan serta komponen bangunannya sangat tahan aus.
2). Peralatan serta komponen pada suhu yang relatif tinggi dapat digunakan sepenuhnya dan tetap demikian.
3). Peralatan pada timbulnya naik turun suhu yang singkat tetap dapat berfungsi.
4). Kebocoran-kebocoran yang mungkin ada tidak mempengaruhi ketentuan bekerjanya suatu instalasi.
m. Biaya pemasangan murah
1). Mengembalikan udara bertekanan yang telah digunakan ke sumbernya (kompresor) tidak perlu dilakukan. Udara bekas dengan segera mengalir keluar ke atmosfir, sehingga tidak diperlukan saluran-saluran balik, hanya saluran masuk saja.
2). Suatu peralatan udara bertekanan dengan kapasitas yang tepat, dapat melayani semua pemakai dalam satu industri. Sebaliknya, pengendalian-pengendalian hidrolik memerlukan sumber energi untuk setiap instalasi tersendiri (motor dan pompa).
n. Pengawasan (kontrol)
1). Pengawasan tekanan kerja dan gaya-gaya atas komponen udara bertekanan yang berfungsi dengan mudah dapat dilaksanakan dengan pengukur-pengukur tekanan (manometer).
o. Fluida kerja cepat
1). Kecepatan-kecepatan udara yang sangat tinggi menjamin bekerjanya elemen-elemen pneumatik dengan cepat. Oleh sebab itu waktu menghidupkan adalah singkat dan perubahan energi menjadi kerja berjalan cepat.
2). Dengan udara mampat orang dapat melaksanakan jumlah perputaran yang tinggi ( Motor Udara ) dan kecepatan-kecepatan piston besar (silinder-silinder kerja ).
3). Udara bertekanan dapat mencapai kecepatan alir sampai 1000 m/min (dibandingkan dengan energi hidrolik sampai 180 m/min ).
4). Dalam silinder pneumatik kecepatan silinder dari 1 sampai 2 m/detik mungkin saja ( dalam pelaksanaan khusus malah sampai 15 m/detik ).
5). Kecepatan sinyal-sinyal kendali pada umumnya terletak antara 40 dan 70 m/detik (2400 sampai 4200 m/min)
p. Dapat diatur tanpa bertingkat
1). Dengan katup pengatur aliran, kecepatan dan gaya dapat diatur tanpa bertingkat mulai dari suatu nilai minimum (ditentukan oleh besarnya silinder) sampai maksimum (tergantung katup pengatur yang digunakan).
2). Tekanan udara dengan sederhana dan kalau dibutuhkan dalam keadaan sedang bekerja dapat disesuaikan dengan keadaan.
3). Beda perkakas rentang tenaga jepitnya dapat disetel dengan memvariasikan tekanan udara tanpa bertingkat dari 0 sampai 6 bar.
4). Tumpuan-tumpuan dapat disetel guna mengatur panjang langkah silinder kerja yang dapat disetel terus-menerus (panjang langkah ini dapat bervariasi sembarang antara kedua kedudukan akhirnya).
5). Perkakas-perkakas pneumatik yang berputar dapat diatur jumlah putaran dan momen putarnya tanpa bertingkat.
q. Ringan sekali
Berat alat-alat pneumatik jauh lebih kecil daripada mesin yang digerakkan elektrik dan perkakas-perkakas konstruksi elektrik (hal ini sangat penting pada perkakas tangan atau perkakas tumbuk). Perbandingan berat (dengan daya yang sama) antara :
• motor pneumatik : motor elektrik = 1 : 8 (sampai 10)
• motor pneumatik : motor frekuensi tinggi = 1 : 3 (sampai 4)
r. Kemungkinan penggunaan lagi (ulang)
Komponen-komponen pneumatik dapat digunakan lagi, misalnya kalau komponen-komponen ini tidak dibutuhkan lagi dalam mesin tua.
r. Konstruksi kokoh
Pada umumnya komponen pneumatik ini dikonstruksikan secara kompak dan kokoh, dan oleh karena itu hampir tidak peka terhadap gangguan dan tahan terhadap perlakuan-perlakuan kasar.
s. Fluida kerja murah
Pengangkut energi (udara) adalah gratis dan dapat diperoleh senantiasa dan dimana saja. Yang harus dipilih adalah suatu kompresor yang tepat untuk keperluan tertentu; jika seandainya kompresor yang dipilih tidak memenuhi syarat, maka segala keuntungan pneumatik tidak ada lagi.
1.3 Kerugian / terbatasnya Pneumatik
a. Ketermampatan (udara).
Udara dapat dimampatkan. Oleh sebab itu adalah tidak mungkin untuk mewujudkan kecepatan-kecepatan piston dan pengisian yang perlahan-lahan dan tetap, tergantung dari bebannya.
Pemecahan :
• kesulitan ini seringkali diberikan dengan mengikutsertakan elemen hidrolik dalam hubungan bersangkutan, tertama pada pengerjaan-pengerjaan cermat ( bor, bubut atau frais ) hal ini merupakan suatu alat bantu yang seringkali digunakan.
b. Gangguan Suara (Bising)
Udara yang ditiup ke luar menyebabkan kebisingan (desisan) mengalir ke luar, terutama dalam ruang-ruang kerja sangat mengganggu.
Pemecahan :
• dengan memberi peredam suara (silincer)
c. Kegerbakan (volatile)
Udara bertekanan sangat gerbak (volatile). Terutama dalam jaringan-jaringan udara bertekanan yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak, sehingga udara bertekanan mengalir keluar. Oleh karena itu pemakaian udara bertekanan dapat meningkat secara luar biasa dan karenanya harga pokok energi “berguna” sangat tinggi.
Pemecahan :
• dapat dilakukan dengan menggunakan perapat-perapat berkualitas tinggi.
d. Kelembaban udara
Kelembaban udara dalam udara bertekanan pada waktu suhu menurun dan tekanan meningkat dipisahkan sebagai tetesan air (air embun).
Pemecahan :
• penggunaan filter-filter untuk pemisahan air embun (dan juga untuk penyaring kotoran-kotoran).
e. Bahaya pembekuan
Pada waktu pemuaian tiba-tiba (dibelakang pemakai udara bertekanan) dan penurunan suhu yang bertalian dengan pemuaian tiba-tiba ini, dapat terjadi pembentukan es.
Pemecahan :
• Batasi pemuaian udara bertekanan dalam perkakas-perkakas pneumatik.
• Biarkan udara memuai sepenuhnya pada saat diadakan peniupan ke luar.
f. Kehilangan energi dalam bentuk kalor.
Energi kompresi adiabatik dibuang dalam bentuk kalor dalam pendingin antara dan akhir. Kalor ini hilang sama sekali dan kerugian ini hampir tidak dapat dikurangi.
g. Pelumasan udara bertekanan
Oleh karena tidak adanya sistem pelumasan untuk bagian-bagian yang bergerak, maka bahan pelumas ini dimasukkan bersamaan dengan udara yang mengalir, untuk itu bahan pelumas harus dikabutkan dalam udara bertekanan.
h. Gaya tekan terbatas
1). Dengan udara bertekanan hanya dapat dibangkitkan gaya yang terbatas saja. Untuk gaya yang besar, pada tekanan jaringan normal dibutuhkan diameter piston yang besar.
2). Penyerapan energi pada tekanan-tekanan kejutan hidrolik dapat memberi jalan keluar.
i. Ketidakteraturan
Suatu gerakan teratur hampir tidak dapat diwujudkan :
1). Pada pembebanan berganti-ganti
2). Pada kecepatan-kecepatan kecil (kurang dari 0,25 cm/det) dapat timbul ‘stick-slip effect’.
j. Tidak ada sinkronisasi
Menjalankan dua silinder atau lebih paralel sangat sulit dilakukan.
k. Biaya energi tinggi
Biaya produksi udara bertekanan adalah tinggi. Oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus. Setidak-tidaknya biaya ini lebih tinggi dibandingkan dengan penggerak elektrik.
Perbandingan biaya ( tergantung dari cara penggerak ) :
• Elektrik : Pneumatik = 1 : 10 (sampai 12)
• Elektrik : Hidrolik = 1 : 8 (sampai 10)
• Elektrik : Tangan = 1 : 400 (sampai 500)
1.4 Pemecahan Kerugian Pneumatik
Pada umumnya, hal-hal yang merugikan dapat dikurangi atau dikompensasi dengan :
a. Peragaman yang cocok dari komponen-komponen maupun alat pneumatik.
b. Pemilihan sebaik mungkin sistem pneumatik yang dibutuhkan.
c. Kombinasi yang sesuai dengan tujuannya dari berbagai sistem penggerakan dan pengendalian (elektrik, pneumatik dan hidrolik).
Pneumatik menggunakan hukum-hukum aeromekanika, yang menentukan keadaan keseimbangan gas dan uap (khususnya udara atmosfir) dengan adanya gaya-gaya luar (aerostatika) dan teori aliran (aerodinamika). Pneumatik dalam pelaksanaan teknik udara mampat dalam industri merupakan ilmu pengetahuan dari semua proses mekanik dimana udara memindahkan suatu gaya atau gerakan. Jadi pneumatik meliputi semua komponen mesin atau peralatan, dalam mana terjadi proses-proses pneumatik. Dalam bidang kejuruan teknik pneumatik dalam pengertian yang lebih sempit lagi adalah teknik udara mampat (udara bertekanan).
Komponen-komponen Pneumatik
Komponen pneumatik beroperasi pada tekanan 8 s.d. 10 bar, tetapi dalam praktik dianjurkan beroperasi pada tekanan 5 s.d. 6 bar untuk penggunaan yang ekonomis.
Beberapa bidang aplikasi di industri yang menggunakan media pneumatik dalam hal penangan material adalah sebagai berikut :
a. Pencekaman benda kerja
b. Penggeseran benda kerja
c. Pengaturan posisi benda kerja
d. Pengaturan arah benda kerja
Penerapan pneumatik secara umum :
a. Pengemasan (packaging)
b. Pemakanan (feeding)
c. Pengukuran (metering)
d. Pengaturan buka dan tutup (door or chute control)
e. Pemindahan material (transfer of materials)
f. Pemutaran dan pembalikan benda kerja (turning and inverting of parts)
g. Pemilahan bahan (sorting of parts)
h. Penyusunan benda kerja (stacking of components)
i. Pencetakan benda kerja (stamping and embosing of components)
Susunan sistem pneumatik adalah sebagai berikut :
a. Catu daya (energi supply)
b. Elemen masukan (sensors)
c. Elemen pengolah (processors)
d. Elemen kerja (actuators)
1.1 Alasan Pemakaian Pneumatik
Persaingan antara peralatan pneumatik dengan peralatan mekanik, hidrolik atau elektrik makin menjadi besar. Dalam penggunaannya sistem pneumatik diutamakan karena beberapa hal yaitu :
a. paling banyak dipertimbangkan untuk beberapa mekanisasi,
b. dapat bertahan lebih baik terhadap keadaan-keadaan tertentu
Sering kali suatu proses tertentu dengan cara pneumatik, berjalan lebih rapi (efisien) dibandingkan dengan cara lainnya. Contoh :
1). Palu-palu bor dan keling pneumatik adalah jauh lebih baik dibandingkan dengan perkakas-perkakas elektrik serupa karena lebih ringan, lebih ada kepastian kerja dan lebih sederhana dalam pelayanan.
2). Pesawat-pesawat pneumatik telah mengambil suatu kedudukan monopoli yang penting pada :
a). rem-rem udara bertekanan untuk mobil angkutan dan gerbong-gerbong kereta api, alat-alat angkat dan alat-alat angkut.
b). pistol-pistol ( alat cat semprot, mesin-mesin peniup kaca, berbagai jenis penyejukan udara, kepala-kepala asah kecepatan tinggi ).
Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau lebih baik pembatasan-pembatasan pada penggunaannya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat.
1.2 Keuntungan Pemakaian Pneumatik
a. Merupakan media/fluida kerja yang mudah didapat dan mudah diangkut :
1). Udara dimana saja tersedia dalam jumlah yang tak terhingga.
2). Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfir, sistem elektrik dan hidrolik memerlukan saluran balik.
3). Udara bertekanan dapat diangkut dengan mudah melalui saluran-saluran dengan jarak yang besar, jadi pembuangan udara bertekanan dapat dipusatkan dan menggunakan saluran melingkar semua pemakai dalam satu perusahaan dapat dilayani udara bertekanan dengan tekanan tetap dan sama besarnya. Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disediakan dimana saja dalam perusahaan.
b. Dapat disimpan dengan mudah :
1). Sumber udara bertekanan ( kompresor ) hanya menyerahkan udara bertekanan kalau udara bertekanan ini memang digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.
2). Pengangkutan ke dan penyimpanan dalam tangki-tangki penampung juga dimungkinkan.
3). Suatu daur kerja yang telah dimulai selalu dapat diselesaikan, demikian pula kalau penyediaan listrik tiba-tiba dihentikan.
c. Bersih dan kering :
1). Udara bertekanan adalah bersih. Kalau ada kebocoran pada saluran pipa, benda-benda kerja maupun bahan-bahan disekelilingnya tidak akan menjadi kotor.
2). Udara bertekanan adalah kering. Bila terdapat kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik minyak dansebagainya.
3). Dalam industri pangan , kayu , kulit dan tenun serta pada mesin-mesin pengepakan hal yang memang penting sekali adalah bahwa peralatan tetap bersih selama bekerja.
Sistem pneumatik yang bocor bekerja merugikan dilihat dari sudut ekonomis, tetapi dalam keadaan darurat pekerjaan tetap dapat berlangsung. Tidak terdapat minyak bocoran yang mengganggu seperti pada sistem hidrolik.
d. Tidak peka terhadap suhu
1). Udara bersih ( tanpa uap air ) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada nilai-nilai yang rendah, jauh di bawah titik beku ( masing-masing panas atau dingin ).
2). Udara bertekanan juga dapat digunakan pada tempat-tempat yang sangat panas, misalnya untuk pelayanan tempa tekan, pintu-pintu dapur pijar, dapur pengerasan atau dapur lumer.
3). Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri-industri baja atau bengkel-bengkel tuang (cor).
e. Aman terhadap kebakaran dan ledakan
1). Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan.
2). Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan, alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.
f. Tidak diperlukan pendinginan fluida kerja
1). Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya. Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.
g. Rasional (menguntungkan)
1). Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi.
2). Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan komponen-komponen peralatan hidrolik.
h. Kesederhanaan (mudah pemeliharaan)
1). Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
2). Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, cakera bubungan, pegas, poros sekerup dan roda gigi.
3). Konstruksinya yang sederhana menyebabkan waktu montase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat direparasi sendiri, yaitu oleh ahli teknik, montir atau operator setempat.
4). Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.
i. Sifat dapat bergerak
1). Selang-selang elastik memberi kebebasan pindah yang besar sekali dari komponen pneumatik ini.
j. Aman
1). Sama sekali tidak ada bahaya dalam hubungan penggunaan pneumatik, juga tidak jika digunakan dalam ruang-ruang lembab atau di udara luar. Pada alat-alat elektrik ada bahaya hubungan singkat.
k. Dapat dibebani lebih ( tahan pembebanan lebih )
Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih. Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
1). Pada pembebanan lebih alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.
2). Suatu jaringan udara bertekanan dapat diberi beban lebih tanpa rusak.
3). Silinder-silinder gaya tak peka pembebanan lebih dan dengan menggunakan katup-katup khusus maka kecepatan torak dapat disetel tanpa bertingkat.
l. Jaminan bekerja besar
Jaminan bekerja besar dapat diperoleh karena :
1). Peralatan serta komponen bangunannya sangat tahan aus.
2). Peralatan serta komponen pada suhu yang relatif tinggi dapat digunakan sepenuhnya dan tetap demikian.
3). Peralatan pada timbulnya naik turun suhu yang singkat tetap dapat berfungsi.
4). Kebocoran-kebocoran yang mungkin ada tidak mempengaruhi ketentuan bekerjanya suatu instalasi.
m. Biaya pemasangan murah
1). Mengembalikan udara bertekanan yang telah digunakan ke sumbernya (kompresor) tidak perlu dilakukan. Udara bekas dengan segera mengalir keluar ke atmosfir, sehingga tidak diperlukan saluran-saluran balik, hanya saluran masuk saja.
2). Suatu peralatan udara bertekanan dengan kapasitas yang tepat, dapat melayani semua pemakai dalam satu industri. Sebaliknya, pengendalian-pengendalian hidrolik memerlukan sumber energi untuk setiap instalasi tersendiri (motor dan pompa).
n. Pengawasan (kontrol)
1). Pengawasan tekanan kerja dan gaya-gaya atas komponen udara bertekanan yang berfungsi dengan mudah dapat dilaksanakan dengan pengukur-pengukur tekanan (manometer).
o. Fluida kerja cepat
1). Kecepatan-kecepatan udara yang sangat tinggi menjamin bekerjanya elemen-elemen pneumatik dengan cepat. Oleh sebab itu waktu menghidupkan adalah singkat dan perubahan energi menjadi kerja berjalan cepat.
2). Dengan udara mampat orang dapat melaksanakan jumlah perputaran yang tinggi ( Motor Udara ) dan kecepatan-kecepatan piston besar (silinder-silinder kerja ).
3). Udara bertekanan dapat mencapai kecepatan alir sampai 1000 m/min (dibandingkan dengan energi hidrolik sampai 180 m/min ).
4). Dalam silinder pneumatik kecepatan silinder dari 1 sampai 2 m/detik mungkin saja ( dalam pelaksanaan khusus malah sampai 15 m/detik ).
5). Kecepatan sinyal-sinyal kendali pada umumnya terletak antara 40 dan 70 m/detik (2400 sampai 4200 m/min)
p. Dapat diatur tanpa bertingkat
1). Dengan katup pengatur aliran, kecepatan dan gaya dapat diatur tanpa bertingkat mulai dari suatu nilai minimum (ditentukan oleh besarnya silinder) sampai maksimum (tergantung katup pengatur yang digunakan).
2). Tekanan udara dengan sederhana dan kalau dibutuhkan dalam keadaan sedang bekerja dapat disesuaikan dengan keadaan.
3). Beda perkakas rentang tenaga jepitnya dapat disetel dengan memvariasikan tekanan udara tanpa bertingkat dari 0 sampai 6 bar.
4). Tumpuan-tumpuan dapat disetel guna mengatur panjang langkah silinder kerja yang dapat disetel terus-menerus (panjang langkah ini dapat bervariasi sembarang antara kedua kedudukan akhirnya).
5). Perkakas-perkakas pneumatik yang berputar dapat diatur jumlah putaran dan momen putarnya tanpa bertingkat.
q. Ringan sekali
Berat alat-alat pneumatik jauh lebih kecil daripada mesin yang digerakkan elektrik dan perkakas-perkakas konstruksi elektrik (hal ini sangat penting pada perkakas tangan atau perkakas tumbuk). Perbandingan berat (dengan daya yang sama) antara :
• motor pneumatik : motor elektrik = 1 : 8 (sampai 10)
• motor pneumatik : motor frekuensi tinggi = 1 : 3 (sampai 4)
r. Kemungkinan penggunaan lagi (ulang)
Komponen-komponen pneumatik dapat digunakan lagi, misalnya kalau komponen-komponen ini tidak dibutuhkan lagi dalam mesin tua.
r. Konstruksi kokoh
Pada umumnya komponen pneumatik ini dikonstruksikan secara kompak dan kokoh, dan oleh karena itu hampir tidak peka terhadap gangguan dan tahan terhadap perlakuan-perlakuan kasar.
s. Fluida kerja murah
Pengangkut energi (udara) adalah gratis dan dapat diperoleh senantiasa dan dimana saja. Yang harus dipilih adalah suatu kompresor yang tepat untuk keperluan tertentu; jika seandainya kompresor yang dipilih tidak memenuhi syarat, maka segala keuntungan pneumatik tidak ada lagi.
1.3 Kerugian / terbatasnya Pneumatik
a. Ketermampatan (udara).
Udara dapat dimampatkan. Oleh sebab itu adalah tidak mungkin untuk mewujudkan kecepatan-kecepatan piston dan pengisian yang perlahan-lahan dan tetap, tergantung dari bebannya.
Pemecahan :
• kesulitan ini seringkali diberikan dengan mengikutsertakan elemen hidrolik dalam hubungan bersangkutan, tertama pada pengerjaan-pengerjaan cermat ( bor, bubut atau frais ) hal ini merupakan suatu alat bantu yang seringkali digunakan.
b. Gangguan Suara (Bising)
Udara yang ditiup ke luar menyebabkan kebisingan (desisan) mengalir ke luar, terutama dalam ruang-ruang kerja sangat mengganggu.
Pemecahan :
• dengan memberi peredam suara (silincer)
c. Kegerbakan (volatile)
Udara bertekanan sangat gerbak (volatile). Terutama dalam jaringan-jaringan udara bertekanan yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak, sehingga udara bertekanan mengalir keluar. Oleh karena itu pemakaian udara bertekanan dapat meningkat secara luar biasa dan karenanya harga pokok energi “berguna” sangat tinggi.
Pemecahan :
• dapat dilakukan dengan menggunakan perapat-perapat berkualitas tinggi.
d. Kelembaban udara
Kelembaban udara dalam udara bertekanan pada waktu suhu menurun dan tekanan meningkat dipisahkan sebagai tetesan air (air embun).
Pemecahan :
• penggunaan filter-filter untuk pemisahan air embun (dan juga untuk penyaring kotoran-kotoran).
e. Bahaya pembekuan
Pada waktu pemuaian tiba-tiba (dibelakang pemakai udara bertekanan) dan penurunan suhu yang bertalian dengan pemuaian tiba-tiba ini, dapat terjadi pembentukan es.
Pemecahan :
• Batasi pemuaian udara bertekanan dalam perkakas-perkakas pneumatik.
• Biarkan udara memuai sepenuhnya pada saat diadakan peniupan ke luar.
f. Kehilangan energi dalam bentuk kalor.
Energi kompresi adiabatik dibuang dalam bentuk kalor dalam pendingin antara dan akhir. Kalor ini hilang sama sekali dan kerugian ini hampir tidak dapat dikurangi.
g. Pelumasan udara bertekanan
Oleh karena tidak adanya sistem pelumasan untuk bagian-bagian yang bergerak, maka bahan pelumas ini dimasukkan bersamaan dengan udara yang mengalir, untuk itu bahan pelumas harus dikabutkan dalam udara bertekanan.
h. Gaya tekan terbatas
1). Dengan udara bertekanan hanya dapat dibangkitkan gaya yang terbatas saja. Untuk gaya yang besar, pada tekanan jaringan normal dibutuhkan diameter piston yang besar.
2). Penyerapan energi pada tekanan-tekanan kejutan hidrolik dapat memberi jalan keluar.
i. Ketidakteraturan
Suatu gerakan teratur hampir tidak dapat diwujudkan :
1). Pada pembebanan berganti-ganti
2). Pada kecepatan-kecepatan kecil (kurang dari 0,25 cm/det) dapat timbul ‘stick-slip effect’.
j. Tidak ada sinkronisasi
Menjalankan dua silinder atau lebih paralel sangat sulit dilakukan.
k. Biaya energi tinggi
Biaya produksi udara bertekanan adalah tinggi. Oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus. Setidak-tidaknya biaya ini lebih tinggi dibandingkan dengan penggerak elektrik.
Perbandingan biaya ( tergantung dari cara penggerak ) :
• Elektrik : Pneumatik = 1 : 10 (sampai 12)
• Elektrik : Hidrolik = 1 : 8 (sampai 10)
• Elektrik : Tangan = 1 : 400 (sampai 500)
1.4 Pemecahan Kerugian Pneumatik
Pada umumnya, hal-hal yang merugikan dapat dikurangi atau dikompensasi dengan :
a. Peragaman yang cocok dari komponen-komponen maupun alat pneumatik.
b. Pemilihan sebaik mungkin sistem pneumatik yang dibutuhkan.
c. Kombinasi yang sesuai dengan tujuannya dari berbagai sistem penggerakan dan pengendalian (elektrik, pneumatik dan hidrolik).
hukum-hukum dasar listrik
Dalam dunia listrik dikenal beberapa hukum-hukum dasar listrik, yaitu:
1. Hukum Faraday
2. Hukum Ampere-Biot-Savart
3. Hukum Lenz
4. Prinsip Konversi Energi Elektromekanik
Kesemua hukum diatas, bersama dengan hukum kekekalan energi akan menjelaskan mengenai prinsip kerja dasar dari suatu mesin listrik dinamis.
Artikel kali ini akan menjelaskan secara sederhana hubungan kesemua hukum tersebut. Selamat membaca dan semoga bermanfaat.
Hukum Faraday
Michael faraday (1791-1867), seorang ilmuwan jenius dari inggris menyatakan bahwa:
1. Jika sebuah penghantar memotong garis-garis gaya dari suatu medan magnetik (flux) yang konstan, maka pada penghantar tersebut akan timbul tegangan induksi.
2. Perubahan flux medan magnetik didalam suatu rangkaian bahan penghantar, akan menimbulkan tegangan induksi pada rangkaian tersebut.
Kedua pernyataan beliau diatas menjadi hukum dasar listrik yang menjelaskan mengenai fenomena induksi elektromagnetik dan hubungan antara perubahan flux dengan tegangan induksi yang ditimbulkan dalam suatu rangkaian, aplikasi dari hukum ini adalah pada generator. Gambar 1 akan menjelaskan mengenai fenomena tersebut.
Gambar 1. Hukum Faraday, Induksi Elektromagnetik.
Hukum Ampere-Biot-Savart
3 orang ilmuwan jenius dari perancis, Andre Marie Ampere (1775-1863), Jean Baptista Biot (1774-1862) dan Victor Savart (1803-1862) menyatakan bahwa:
“Gaya akan dihasilkan oleh arus listrik yang mengalir pada suatu penghantar yang berada diantara medan magnetik”
Hal ini juga merupakan kebalikan dari hukum faraday, dimana faraday memprediksikan bahwa tegangan induksi akan timbul pada penghantar yang bergerak dan memotong medan magnetik. Hukum ini diaplikasikan pada mesin-mesin listrik, dan gambar 2 akan menjelaskan mengenai fenomena tersebut.
Gambar 2. Hukum Ampere-Biot-Savart, Gaya induksi Elektromagnetik.
Hukum Lenz
Pada tahun 1835 seorang ilmuwan jenius yang dilahirkan di Estonia, Heinrich Lenz (1804-1865) menyatakan bahwa:
“arus induksi elektromagnetik dan gaya akan selalu berusaha untuk saling meniadakan (gaya aksi dan reaksi)”
Sebagai contoh, jika suatu penghantar diberikan gaya untuk berputar dan memotong garis-garis gaya magnetik, maka pada penghantar tersebut akan timbul tegangan induksi (hukum faraday). Kemudian jika pada ujung-ujung penghantar tersebut saling dihubungkan maka akan mengalir arus induksi, dan arus induksi ini akan menghasilkan gaya pada penghantar tersebut (hukum ampere-biot-savart). Yang akan diungkapkan oleh Lenz adalah gaya yang dihasilkan tersebut berlawanan arah dengan arah gerakan penghantar tersebut, sehingga akan saling meniadakan.
Hukum Lenz inilah yang menjelaskan mengenai prinsip kerja dari mesin listrik dinamis (mesin listrik putar) yaitu generator dan motor.
Gambar 3. Hukum Lenz- gaya aksi dan reaksi.
Konversi Energi Elektromekanik
Ketiga hukum dasar listrik diatas terjadi pada proses kerja dari suatu mesin listrik dan hal ini merupakan prinsip dasar dari konversi energi. Secara garis besar, elektromekanik dari mesin listrik dinamis dinyatakan:
“Semua energi listrik dan energi mekanik mengalir kedalam mesin, dan hanya sebagian kecil saja dari energi listrik dan energi mekanik yang mengalir keluar mesin (terbuang) ataupun disimpan didalam mesin itu sendiri, sedangkan energi yang terbuang tersebut dalam bentuk panas”
Sedangkan hukum kekelan energi pertama menyatakan bahwa:
“energi tidak dapat diciptakan, namun dapat berubah bentuk dari satu bentuk energi ke bentuk energi lainnya”
Aplikasi dari 4 dasar prinsip kerja mesin listrik dinamis dan hukum kekalan energi digambarkan sebagai berikut:
Gambar 4. Prinsip Konversi Energi Elektromekanik.
Tanda positif (+) menunjukkan energi masuk, sedangkan tanda negatif (-) menunjukkan energi keluar. Panas yang dihasilkan dari suatu mesin yang sedang melakukan proses selalu dalam tanda negatif (-).
Sedangkan untuk energi yang tersimpan, tanda positif (+) menujukkan peningkatan energi yang tersimpan, sedangkan tanda negatif (-) menunjukkan pengurangan energi yang tersimpan.
Keseimbangan dari bentuk-bentuk energi diatas tergantung dari nilai efisiensi mesin dan sistem pendinginannya.
Fluksi Medan Magnet
Medan magnet tidak bisa kasat mata namun buktinya bisa diamati dengan kompas atau serbuk halus besi. Daerah sekitar yang ditembus oleh garis gaya magnet disebut gaya medan magnetik atau medan magnetik. Jumlah garis gaya dalam medan magnet disebut fluksi magnetik.
Gambar 1. Belitan kawat berinti udara dan garis-garis gaya magnet.
Menurut satuan internasional besaran fluksi magnetik (Φ) diukur dalam Weber, disingkat Wb dan didefinisikan dengan:
”Suatu medan magnet serba sama mempunyai fluksi magnetik sebesar 1 weber bila sebatang penghantar dipotongkan pada garis-garis gaya magnet tsb selama satu detik akan menimbulkan gaya gerak listrik (ggl) sebesar satu volt”
Weber = Volt x detik
[Φ] = 1 Voltdetik = 1 Wb
Belitan kawat yang dialiri arus listrik DC maka didalam inti belitan akan timbul
medan magnet yang mengalir dari kutub utara menuju kutub selatan, seperti diperlihatkan pada gambar 2.
Gambar 2. Daerah Pengaruh medan magnet.
Pengaruh gaya gerak magnetik akan melingkupi daerah sekitar belitan yang diberikan warna arsir. Gaya gerak magnetik (θ) sebanding lurus dengan jumlah belitan (N) dan besarnya arus yang mengalir (I), secara singkat kuat medan magnet sebanding dengan amper-lilit.
θ = I . N
[θ] = Amper-turn
dimana;
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N = Jumlah belitan kawat
Contoh : Belitan kawat sebanyak 500 lilit, dialiri arus 2 A.
Hitunglah a) gaya gerak magnetiknya b) jika kasus a) dipakai 1000 lilit berapa besarnya arus ?
Jawaban :
a) θ = I . N = 500 lilit x 2 A = 1.000 Ampere-lilit
b) I = θ /N = 1.000 Amper-lilit/1000 lilit = 1 Ampere.
Kuat Medan Magnet
Dua belitan berbentuk toroida dengan ukuran yang berbeda diameternya. Belitan toroida yang besar memiliki diameter lebih besar, sehingga keliling lingkarannya lebih besar. Belitan toroida yang kecil tentunya memiliki keliling lebih kecil. Jika keduanya memiliki belitan (N) yang sama, dan dialirkan arus (I) yang sama maka gaya gerak magnet (Θ = N.I) juga sama. Yang akan berbeda adalah kuat medan magnet (H) dari kedua belitan diatas.
Persamaan kuat medan magnet adalah:
Dimana:
H = Kuat medan magnet
lm = Panjang lintasan
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N= Jumlah belitan kawat
Contoh : Kumparan toroida dengan 6.000 belitan kawat, panjang lintasan magnet 30cm, arus yang mengalir sebesar 200 mA. Hitung besarnya kuat medan magnetiknya
Jawaban :
H = I.N/Im = 0,2 A. 6.000 / 0,3 = 4000 A/m
Kerapatan Fluksi Magnet
Efektivitas medan magnetik dalam pemakaian sering ditentukan oleh besarnya “kerapatan fluksi magnet”, artinya fluksi magnet yang berada pada permukaan yang lebih luas kerapatannya rendah dan intensitas medannya lebih lemah, sedangkan pada permukaan yang lebih sempit kerapatan fluksi magnet akan kuat dan intensitas medannya lebih tinggi.
Kerapatan fluksi magnet (B) atau induksi magnetik didefinisikan sebagai:
“fluksi persatuan luas penampang”
Satuan fluksi magnet adalah Tesla. Persamaan fluksi magnet adalah:
Dimana;
B = Kerapatan medan magnet
Φ = Fluksi magnet
A = Penampang inti
Contoh : Belitan kawat bentuk inti persegi 50mm x 30 mm, menghasilkan kerapatan fluksi magnet sebesar 0,8 Tesla. Hitung besar fluksi magnetnya.
Jawaban: B = Φ/ A, maka Φ = B.A = 0,08T x (0,05 m x 0,03 m) = 1,2 mWb
Elektromagnet
Elektromagnet adalah prinsip pembangkitan magnet dengan menggunakan arus listrik. Aplikasi praktisnya kita temukan pada motor listrik, speaker, relay dsb. Sebatang kawat yang diberikan listrik DC arahnya meninggalkan kita (tanda silang), maka disekeliling kawat timbul garis gaya magnet melingkar, lihat gambar 1. Sedangkan gambar visual garis gaya magnet didapatkan dari serbuk besi yang ditaburkan disekeliling kawat beraliran listrik, seperti dijelaskan pada Prinsip-prinsip kemagnetan pokok bahasan selanjutnya.
Gambar 1. Prinsip elektromagnetik.
Sebatang kawat pada posisi vertikal diberikan arus listrik DC searah panah, maka arus menuju keatas arah pandang (tanda titik). Garis gaya magnet yang membentuk selubung berlapis lapis terbentuk sepanjang kawat. Garis gaya magnet ini tidak tampak oleh mata kita, cara melihatnya dengan serbuk halus besi atau kompas yang didekatkan dengan kawat penghantar tsb. Kompas menunjukkan bahwa arah garis gaya sekitar kawat melingkar. Arah medan magnet disekitar penghantar sesuai arah putaran sekrup (James Clerk Maxwell, 1831-1879). arah arus kedepan (meninggalkan kita) maka arah medan magnet searah putaran sekrup kekanan. Sedangkan bila arah arus kebelakang (menuju kita) maka arah medan magnet adalah kekiri.
Gambar 2. Garis magnet membentuk selubung seputar kawat berarus.
Gambar 3. Prinsip putaran sekrup
Aturan sekrup mirip dengan hukum tangan kanan yang menggenggam, dimana arah ibu jari menyatakan arah arus listrik mengalir pada kawat. Maka keempat arah jari menyatakan arah dari garis gaya elektromagnet yang ditimbulkan.
Arah aliran arus listrik DC pada kawat penghantar menentukan arah garis gaya elektromagnet. Arah arus listrik DC menuju kita (tanda titik pada penampang kawat), arah garis gaya elektromagnet melingkar berlawanan arah jarum jam. Ketika arah arus listrik DC meninggalkan kita (tanda silang penampang kawat), garis gaya elektromagnet yang ditimbulkan melingkar searah dengan jarum jam (sesuai dengan model mengencangkan sekrup). Makin besar intensitas arus yang mengalir semakin kuat medan elektro-magnet yang mengelilingi sepanjang kawat tersebut.
Gambar 4. Elektromagnetik sekeliling kawat.
Elektromagnet pada Belitan Kawat
Jika sebuah kawat penghantar berbentuk bulat dialiri arus listrik I sesuai arah panah, maka disekeliling kawat timbul garis gaya magnet yang arahnya secara gabungan membentuk kutub utara dan kutub selatan. Makin besar arus listrik yang melewati kawat, maka akan semakin kuat medan elektromagnetik yang ditimbulkannya.
Gambar 5. Kawat melingkar berarus membentuk kutub magnet
Jika beberapa belitan kawat digulungkan membentuk sebuah coil atau lilitan, dan kemudian dipotong secara melintang maka arah arus ada dua jenis. Kawat bagian atas bertanda silang (meninggalkan kita) dan kawat bagian bawah bertanda titik (menuju kita).
Gambar 6. Belitan kawat membentuk kutub magnet.
Hukum Tangan Kanan
Hukum tangan kanan untuk menjelas kan terbentuknya garis gaya elektromagnet pada sebuah gulungan atau coil dapat dilihat pada gambar 7. Dimana sebuah
gulungan kawat coil dialiri arus listrik, maka arah arusnya ditunjukkan sesuai dengan empat jari tangan kanan, sedangkan kutub magnet yang dihasilkan ditunjukkan dengan ibu jari untuk arah kutub utara dan kutub selatan arah lainnya.
Gambar 7. Hukum tangan kanan.
Untuk menguatkan medan magnet yang dihasilkan pada gulungan dipasangkan inti besi dari bahan ferromagnet, sehingga garis gaya elektromagnet menyatu. Aplikasinya dipakai pada coil kontaktor atau relay.
Prinsip-Prinsip Kemagnetan
Garis Gaya Magnet - Pada sebuah magnet sebenarnya merupakan kumpulan jutaan magnet ukuran mikroskopik yang teratur satu dan lainnya. Kutub utara dan kutub selatan magnet posisinya teratur (lihat gambar 3). Secara keseluruhan kekuatan magnetnya menjadi besar. Logam besi bisa menjadi magnet secara permanen (tetap) atau bersifat megnet sementara dengan cara induksi elektromagnetik. Tetapi ada beberapa logam yang tidak bisa menjadi magnet, misalnya tembaga dan aluminium, dan logam tersebut dinamakan diamagnetik.
Bumi merupakan magnet alam raksasa, dapat dibuktikan dengan alat yang dinamakan kompas, dimana jarum penunjuk pada kompas akan menunjukkan arah utara dan selatan bumi kita, seperti diperlihatkan pada gambar 1. Karena sekeliling bumi sebenarnya dilingkupi garis gaya magnet yang tidak tampak oleh mata kita tapi bisa diamati dengan kompas keberadaannya.
Gambar 1. Pola garis medan magnet permanen.
Batang magnet memancarkan garis gaya magnet yang melingkupi dengan arah dari utara ke selatan. Pembuktian sederhana dilakukan dengan menempatkan batang magnet diatas selembar kertas, kemudian diatas kertas tersebut ditaburkan serbuk halus besi secara merata, yang terjadi adalah bentuk garis-garis dengan pola melengkung oval diujung-ujung kutub. Ujung kutub utara-selatan muncul pola garis gaya yang kuat. Daerah netral pola garis gaya magnetnya lemah.
Bagian netral magnet artinya tidak memiliki kekuatan magnet. Untuk membuktikan bahwa daerah netral tidak memiliki kekuatan magnet. Ambil beberapa sekrup besi, amatilah tampak sekrup besi akan menempel baik diujung kutub utara maupun ujung kutub selatan. Daerah netral dibagian tengah sekrup tidak akan menempel sama sekali, dan sekrup akan terjatuh.
Gambar 2. Daerah netral pada magnet permanen.
Mengapa besi biasa berbeda logam magnet ? Pada besi biasa sebenarnya terdapat kumpulan magnet-magnet dalam ukuran mikroskopik, tetapi posisi masing-masing magnet tidak beraturan satu dengan lainnya sehingga saling menghilangkan sifat kemagnetannya, lihat gambar 3.
Gambar 3. Perbedaan besi biasa dan magnet permanen.
Arah garis gaya magnet dengan pola garis melengkung mengalir dari arah kutub utara menuju kutub selatan. Didalam batang magnet sendiri garis gaya mengalir sebaliknya, yaitu dari kutub selatan ke kutub utara. Didaerah netral tidak ada garis gaya diluar batang magnet. Pembuktian secara visual garis gaya magnet untuk sifat tarik menarik pada kutub berbeda dan sifat tolak-menolak pada kutub sejenis dengan menggunakan magnet dan serbuk halus besi, gambar 4. Tampak jelas kutub sejenis utara-utara garis gaya saling menolak satu dan lainnya. Pada kutub yang berbeda utara-selatan, garis gaya magnet memiliki pola tarik menarik. Sifat saling tarik menarik dan tolak menolak magnet menjadi dasar bekerjanya motor listrik.
Gambar 4a. Pola garis medan magnet tolak-menolak dan 4b. pola garis medan magnet tarik-menarik.
Gambar 5. Garis medan magnet Utara-Selatan.
Untuk mendapatkan garis gaya magnet yang merata disetiap titik permukaan maka ada dua bentuk yang mendasari rancangan mesin listrik. Bentuk datar (flat) akan menghasilkan garis gaya merata setiap titik permukaannya. Bentuk melingkar (radial), juga menghasilkan garis gaya yang merata setiap titik permukaannya.
Gmbar 6. Garis gaya magnet pada permukaan rata dan silinder.
1. Hukum Faraday
2. Hukum Ampere-Biot-Savart
3. Hukum Lenz
4. Prinsip Konversi Energi Elektromekanik
Kesemua hukum diatas, bersama dengan hukum kekekalan energi akan menjelaskan mengenai prinsip kerja dasar dari suatu mesin listrik dinamis.
Artikel kali ini akan menjelaskan secara sederhana hubungan kesemua hukum tersebut. Selamat membaca dan semoga bermanfaat.
Hukum Faraday
Michael faraday (1791-1867), seorang ilmuwan jenius dari inggris menyatakan bahwa:
1. Jika sebuah penghantar memotong garis-garis gaya dari suatu medan magnetik (flux) yang konstan, maka pada penghantar tersebut akan timbul tegangan induksi.
2. Perubahan flux medan magnetik didalam suatu rangkaian bahan penghantar, akan menimbulkan tegangan induksi pada rangkaian tersebut.
Kedua pernyataan beliau diatas menjadi hukum dasar listrik yang menjelaskan mengenai fenomena induksi elektromagnetik dan hubungan antara perubahan flux dengan tegangan induksi yang ditimbulkan dalam suatu rangkaian, aplikasi dari hukum ini adalah pada generator. Gambar 1 akan menjelaskan mengenai fenomena tersebut.
Gambar 1. Hukum Faraday, Induksi Elektromagnetik.
Hukum Ampere-Biot-Savart
3 orang ilmuwan jenius dari perancis, Andre Marie Ampere (1775-1863), Jean Baptista Biot (1774-1862) dan Victor Savart (1803-1862) menyatakan bahwa:
“Gaya akan dihasilkan oleh arus listrik yang mengalir pada suatu penghantar yang berada diantara medan magnetik”
Hal ini juga merupakan kebalikan dari hukum faraday, dimana faraday memprediksikan bahwa tegangan induksi akan timbul pada penghantar yang bergerak dan memotong medan magnetik. Hukum ini diaplikasikan pada mesin-mesin listrik, dan gambar 2 akan menjelaskan mengenai fenomena tersebut.
Gambar 2. Hukum Ampere-Biot-Savart, Gaya induksi Elektromagnetik.
Hukum Lenz
Pada tahun 1835 seorang ilmuwan jenius yang dilahirkan di Estonia, Heinrich Lenz (1804-1865) menyatakan bahwa:
“arus induksi elektromagnetik dan gaya akan selalu berusaha untuk saling meniadakan (gaya aksi dan reaksi)”
Sebagai contoh, jika suatu penghantar diberikan gaya untuk berputar dan memotong garis-garis gaya magnetik, maka pada penghantar tersebut akan timbul tegangan induksi (hukum faraday). Kemudian jika pada ujung-ujung penghantar tersebut saling dihubungkan maka akan mengalir arus induksi, dan arus induksi ini akan menghasilkan gaya pada penghantar tersebut (hukum ampere-biot-savart). Yang akan diungkapkan oleh Lenz adalah gaya yang dihasilkan tersebut berlawanan arah dengan arah gerakan penghantar tersebut, sehingga akan saling meniadakan.
Hukum Lenz inilah yang menjelaskan mengenai prinsip kerja dari mesin listrik dinamis (mesin listrik putar) yaitu generator dan motor.
Gambar 3. Hukum Lenz- gaya aksi dan reaksi.
Konversi Energi Elektromekanik
Ketiga hukum dasar listrik diatas terjadi pada proses kerja dari suatu mesin listrik dan hal ini merupakan prinsip dasar dari konversi energi. Secara garis besar, elektromekanik dari mesin listrik dinamis dinyatakan:
“Semua energi listrik dan energi mekanik mengalir kedalam mesin, dan hanya sebagian kecil saja dari energi listrik dan energi mekanik yang mengalir keluar mesin (terbuang) ataupun disimpan didalam mesin itu sendiri, sedangkan energi yang terbuang tersebut dalam bentuk panas”
Sedangkan hukum kekelan energi pertama menyatakan bahwa:
“energi tidak dapat diciptakan, namun dapat berubah bentuk dari satu bentuk energi ke bentuk energi lainnya”
Aplikasi dari 4 dasar prinsip kerja mesin listrik dinamis dan hukum kekalan energi digambarkan sebagai berikut:
Gambar 4. Prinsip Konversi Energi Elektromekanik.
Tanda positif (+) menunjukkan energi masuk, sedangkan tanda negatif (-) menunjukkan energi keluar. Panas yang dihasilkan dari suatu mesin yang sedang melakukan proses selalu dalam tanda negatif (-).
Sedangkan untuk energi yang tersimpan, tanda positif (+) menujukkan peningkatan energi yang tersimpan, sedangkan tanda negatif (-) menunjukkan pengurangan energi yang tersimpan.
Keseimbangan dari bentuk-bentuk energi diatas tergantung dari nilai efisiensi mesin dan sistem pendinginannya.
Fluksi Medan Magnet
Medan magnet tidak bisa kasat mata namun buktinya bisa diamati dengan kompas atau serbuk halus besi. Daerah sekitar yang ditembus oleh garis gaya magnet disebut gaya medan magnetik atau medan magnetik. Jumlah garis gaya dalam medan magnet disebut fluksi magnetik.
Gambar 1. Belitan kawat berinti udara dan garis-garis gaya magnet.
Menurut satuan internasional besaran fluksi magnetik (Φ) diukur dalam Weber, disingkat Wb dan didefinisikan dengan:
”Suatu medan magnet serba sama mempunyai fluksi magnetik sebesar 1 weber bila sebatang penghantar dipotongkan pada garis-garis gaya magnet tsb selama satu detik akan menimbulkan gaya gerak listrik (ggl) sebesar satu volt”
Weber = Volt x detik
[Φ] = 1 Voltdetik = 1 Wb
Belitan kawat yang dialiri arus listrik DC maka didalam inti belitan akan timbul
medan magnet yang mengalir dari kutub utara menuju kutub selatan, seperti diperlihatkan pada gambar 2.
Gambar 2. Daerah Pengaruh medan magnet.
Pengaruh gaya gerak magnetik akan melingkupi daerah sekitar belitan yang diberikan warna arsir. Gaya gerak magnetik (θ) sebanding lurus dengan jumlah belitan (N) dan besarnya arus yang mengalir (I), secara singkat kuat medan magnet sebanding dengan amper-lilit.
θ = I . N
[θ] = Amper-turn
dimana;
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N = Jumlah belitan kawat
Contoh : Belitan kawat sebanyak 500 lilit, dialiri arus 2 A.
Hitunglah a) gaya gerak magnetiknya b) jika kasus a) dipakai 1000 lilit berapa besarnya arus ?
Jawaban :
a) θ = I . N = 500 lilit x 2 A = 1.000 Ampere-lilit
b) I = θ /N = 1.000 Amper-lilit/1000 lilit = 1 Ampere.
Kuat Medan Magnet
Dua belitan berbentuk toroida dengan ukuran yang berbeda diameternya. Belitan toroida yang besar memiliki diameter lebih besar, sehingga keliling lingkarannya lebih besar. Belitan toroida yang kecil tentunya memiliki keliling lebih kecil. Jika keduanya memiliki belitan (N) yang sama, dan dialirkan arus (I) yang sama maka gaya gerak magnet (Θ = N.I) juga sama. Yang akan berbeda adalah kuat medan magnet (H) dari kedua belitan diatas.
Persamaan kuat medan magnet adalah:
Dimana:
H = Kuat medan magnet
lm = Panjang lintasan
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N= Jumlah belitan kawat
Contoh : Kumparan toroida dengan 6.000 belitan kawat, panjang lintasan magnet 30cm, arus yang mengalir sebesar 200 mA. Hitung besarnya kuat medan magnetiknya
Jawaban :
H = I.N/Im = 0,2 A. 6.000 / 0,3 = 4000 A/m
Kerapatan Fluksi Magnet
Efektivitas medan magnetik dalam pemakaian sering ditentukan oleh besarnya “kerapatan fluksi magnet”, artinya fluksi magnet yang berada pada permukaan yang lebih luas kerapatannya rendah dan intensitas medannya lebih lemah, sedangkan pada permukaan yang lebih sempit kerapatan fluksi magnet akan kuat dan intensitas medannya lebih tinggi.
Kerapatan fluksi magnet (B) atau induksi magnetik didefinisikan sebagai:
“fluksi persatuan luas penampang”
Satuan fluksi magnet adalah Tesla. Persamaan fluksi magnet adalah:
Dimana;
B = Kerapatan medan magnet
Φ = Fluksi magnet
A = Penampang inti
Contoh : Belitan kawat bentuk inti persegi 50mm x 30 mm, menghasilkan kerapatan fluksi magnet sebesar 0,8 Tesla. Hitung besar fluksi magnetnya.
Jawaban: B = Φ/ A, maka Φ = B.A = 0,08T x (0,05 m x 0,03 m) = 1,2 mWb
Elektromagnet
Elektromagnet adalah prinsip pembangkitan magnet dengan menggunakan arus listrik. Aplikasi praktisnya kita temukan pada motor listrik, speaker, relay dsb. Sebatang kawat yang diberikan listrik DC arahnya meninggalkan kita (tanda silang), maka disekeliling kawat timbul garis gaya magnet melingkar, lihat gambar 1. Sedangkan gambar visual garis gaya magnet didapatkan dari serbuk besi yang ditaburkan disekeliling kawat beraliran listrik, seperti dijelaskan pada Prinsip-prinsip kemagnetan pokok bahasan selanjutnya.
Gambar 1. Prinsip elektromagnetik.
Sebatang kawat pada posisi vertikal diberikan arus listrik DC searah panah, maka arus menuju keatas arah pandang (tanda titik). Garis gaya magnet yang membentuk selubung berlapis lapis terbentuk sepanjang kawat. Garis gaya magnet ini tidak tampak oleh mata kita, cara melihatnya dengan serbuk halus besi atau kompas yang didekatkan dengan kawat penghantar tsb. Kompas menunjukkan bahwa arah garis gaya sekitar kawat melingkar. Arah medan magnet disekitar penghantar sesuai arah putaran sekrup (James Clerk Maxwell, 1831-1879). arah arus kedepan (meninggalkan kita) maka arah medan magnet searah putaran sekrup kekanan. Sedangkan bila arah arus kebelakang (menuju kita) maka arah medan magnet adalah kekiri.
Gambar 2. Garis magnet membentuk selubung seputar kawat berarus.
Gambar 3. Prinsip putaran sekrup
Aturan sekrup mirip dengan hukum tangan kanan yang menggenggam, dimana arah ibu jari menyatakan arah arus listrik mengalir pada kawat. Maka keempat arah jari menyatakan arah dari garis gaya elektromagnet yang ditimbulkan.
Arah aliran arus listrik DC pada kawat penghantar menentukan arah garis gaya elektromagnet. Arah arus listrik DC menuju kita (tanda titik pada penampang kawat), arah garis gaya elektromagnet melingkar berlawanan arah jarum jam. Ketika arah arus listrik DC meninggalkan kita (tanda silang penampang kawat), garis gaya elektromagnet yang ditimbulkan melingkar searah dengan jarum jam (sesuai dengan model mengencangkan sekrup). Makin besar intensitas arus yang mengalir semakin kuat medan elektro-magnet yang mengelilingi sepanjang kawat tersebut.
Gambar 4. Elektromagnetik sekeliling kawat.
Elektromagnet pada Belitan Kawat
Jika sebuah kawat penghantar berbentuk bulat dialiri arus listrik I sesuai arah panah, maka disekeliling kawat timbul garis gaya magnet yang arahnya secara gabungan membentuk kutub utara dan kutub selatan. Makin besar arus listrik yang melewati kawat, maka akan semakin kuat medan elektromagnetik yang ditimbulkannya.
Gambar 5. Kawat melingkar berarus membentuk kutub magnet
Jika beberapa belitan kawat digulungkan membentuk sebuah coil atau lilitan, dan kemudian dipotong secara melintang maka arah arus ada dua jenis. Kawat bagian atas bertanda silang (meninggalkan kita) dan kawat bagian bawah bertanda titik (menuju kita).
Gambar 6. Belitan kawat membentuk kutub magnet.
Hukum Tangan Kanan
Hukum tangan kanan untuk menjelas kan terbentuknya garis gaya elektromagnet pada sebuah gulungan atau coil dapat dilihat pada gambar 7. Dimana sebuah
gulungan kawat coil dialiri arus listrik, maka arah arusnya ditunjukkan sesuai dengan empat jari tangan kanan, sedangkan kutub magnet yang dihasilkan ditunjukkan dengan ibu jari untuk arah kutub utara dan kutub selatan arah lainnya.
Gambar 7. Hukum tangan kanan.
Untuk menguatkan medan magnet yang dihasilkan pada gulungan dipasangkan inti besi dari bahan ferromagnet, sehingga garis gaya elektromagnet menyatu. Aplikasinya dipakai pada coil kontaktor atau relay.
Prinsip-Prinsip Kemagnetan
Garis Gaya Magnet - Pada sebuah magnet sebenarnya merupakan kumpulan jutaan magnet ukuran mikroskopik yang teratur satu dan lainnya. Kutub utara dan kutub selatan magnet posisinya teratur (lihat gambar 3). Secara keseluruhan kekuatan magnetnya menjadi besar. Logam besi bisa menjadi magnet secara permanen (tetap) atau bersifat megnet sementara dengan cara induksi elektromagnetik. Tetapi ada beberapa logam yang tidak bisa menjadi magnet, misalnya tembaga dan aluminium, dan logam tersebut dinamakan diamagnetik.
Bumi merupakan magnet alam raksasa, dapat dibuktikan dengan alat yang dinamakan kompas, dimana jarum penunjuk pada kompas akan menunjukkan arah utara dan selatan bumi kita, seperti diperlihatkan pada gambar 1. Karena sekeliling bumi sebenarnya dilingkupi garis gaya magnet yang tidak tampak oleh mata kita tapi bisa diamati dengan kompas keberadaannya.
Gambar 1. Pola garis medan magnet permanen.
Batang magnet memancarkan garis gaya magnet yang melingkupi dengan arah dari utara ke selatan. Pembuktian sederhana dilakukan dengan menempatkan batang magnet diatas selembar kertas, kemudian diatas kertas tersebut ditaburkan serbuk halus besi secara merata, yang terjadi adalah bentuk garis-garis dengan pola melengkung oval diujung-ujung kutub. Ujung kutub utara-selatan muncul pola garis gaya yang kuat. Daerah netral pola garis gaya magnetnya lemah.
Bagian netral magnet artinya tidak memiliki kekuatan magnet. Untuk membuktikan bahwa daerah netral tidak memiliki kekuatan magnet. Ambil beberapa sekrup besi, amatilah tampak sekrup besi akan menempel baik diujung kutub utara maupun ujung kutub selatan. Daerah netral dibagian tengah sekrup tidak akan menempel sama sekali, dan sekrup akan terjatuh.
Gambar 2. Daerah netral pada magnet permanen.
Mengapa besi biasa berbeda logam magnet ? Pada besi biasa sebenarnya terdapat kumpulan magnet-magnet dalam ukuran mikroskopik, tetapi posisi masing-masing magnet tidak beraturan satu dengan lainnya sehingga saling menghilangkan sifat kemagnetannya, lihat gambar 3.
Gambar 3. Perbedaan besi biasa dan magnet permanen.
Arah garis gaya magnet dengan pola garis melengkung mengalir dari arah kutub utara menuju kutub selatan. Didalam batang magnet sendiri garis gaya mengalir sebaliknya, yaitu dari kutub selatan ke kutub utara. Didaerah netral tidak ada garis gaya diluar batang magnet. Pembuktian secara visual garis gaya magnet untuk sifat tarik menarik pada kutub berbeda dan sifat tolak-menolak pada kutub sejenis dengan menggunakan magnet dan serbuk halus besi, gambar 4. Tampak jelas kutub sejenis utara-utara garis gaya saling menolak satu dan lainnya. Pada kutub yang berbeda utara-selatan, garis gaya magnet memiliki pola tarik menarik. Sifat saling tarik menarik dan tolak menolak magnet menjadi dasar bekerjanya motor listrik.
Gambar 4a. Pola garis medan magnet tolak-menolak dan 4b. pola garis medan magnet tarik-menarik.
Gambar 5. Garis medan magnet Utara-Selatan.
Untuk mendapatkan garis gaya magnet yang merata disetiap titik permukaan maka ada dua bentuk yang mendasari rancangan mesin listrik. Bentuk datar (flat) akan menghasilkan garis gaya merata setiap titik permukaannya. Bentuk melingkar (radial), juga menghasilkan garis gaya yang merata setiap titik permukaannya.
Gmbar 6. Garis gaya magnet pada permukaan rata dan silinder.
Teknik Pengukuran Komponen Dan Rangkaian Elektronika
Mengukur Resistensi
Pilih jangkah pada OHM, kemudian ujung kabel penyidik merah dan hitam disentuhkan dan lakukan zero seting dengan memutar tombol nol.Mengukur Tegangan DC
Perkirakan tegangan yang akan diukur, letakkan jangkah pada skala yang lebih tinggi. penyidik merah pada positif dan hitam pada negative.Mengukur Daya
Daya di hitung dari perkalian arus dan tegangan dari hasil pengukuran arus dan tegangan.Mengukur Tegangan AC
Seperti halnya pada pengukuran VDC, perkirakan tegangan yang akan diukur, letakkan jangkah pada skala yang lebih tinggi. Pada umumnya avometer hanya dapat mengukur arus berbentuk sinus dengan frekuensi antara 30 Hz - 30 KHz. Hasil pengukuran adalah tegangan efektif (Veff).Mengukur Arus (Searah)
Rangkaian yang akan diukur diputuskan pada salah satu titik, dan melalui kedua titik yang terputus tadi arus dilewatkan melalui avometer.Menguji Kapasitor / Kondensator
Sebelumnya muatan kondensator didischarge. Dengan jangkah pada OHM, tempelkan penyidik merah pada kutub POS dan hitam pada MIN.Bila jarum menyimpang ke KANAN dan kemudian secara berangsur-angsur kembali ke KIRI, berarti kondensator baik. Bila jarum tidak bergerak, kondensator putus dan bila jarum mentok ke kanan dan tidak balik, kemungkinan kondensator bocor.
Untuk menguji elco 10 F jangkah pada x10 k atau 1 k. Untuk kapasitas sampai 100 F jangkah pada x100, di atas 1000 F, jangkah x1 dan menguji kondensator non elektrolit jangkah pada x10 k. Menguji Hubungan Pada Circuit / Rangkaian
Suatu circuit atau bisa juga kumparan trafo diperiksa resistansinya, dan koneksi baik bila resistansinya menunjukkan angka NOL.
Menguji Dioda
Dengan jangkah OHM x1 k atau x100 penyidik merah ditempel pada katoda (ada tanda gelang) dan hitam pada anoda, jarum harus ke kanan. Penyidik dibalik ialah merah ke anoda dan hitam ke katoda, jarum harus tidak bergerak. Bila tidak demikian berarti kemungkinan diode rusak.Cara demikian juga dapat digunakan untuk mengetahui mana anoda dan mana katoda dari suatu diode yang gelangnya terhapus.
Dengan jangkah VDC, bahan suatu dioda dapat juga diperkirakan dengan circuit pada gambar 10. Bila tegangan katoda anoda 0.2 V, maka kemungkinan dioda germanium, dan bila 0.6V kemungkinan dioda silicon.
Menguji Transistor
Transistor ekivalen dengan dua buah dioda yang digabung, sehingga prinsip pengujian dioda diterapkan pada pengujian transistor. Untuk transistor jenis NPN, pengujian dengan jangkah pada x100, penyidik hitam ditempel pada Basis dan merah pada Kolektor, jarum harus meyimpang ke kanan. Bila penyidik merah dipindah ke Emitor, jarum harus ke kanan lagi.Kemudian penyidik merah pada Basis dan hitam pada Kolektor, jarum harus tidak menyimpang dan bila penyidik hitam dipindah ke Emitor jarum juga harus tidak menyimpang.
Selanjutnya dengan jangkah pada 1 k penyidik hitam ditempel pada kolektor dan merah, pada emitor, jarum harus sedikit menyimpang ke kanan dan bila dibalik jarum harus tidak menyimpang. Bila salah satu peristiwa tersebut tidak terjadi, maka kemungkinan transistor rusak.
Untuk transitor jenis PNP, pengujian dilakukan dengan penyidik merah pada Basis dan hitam pada Kolektor, jarum harus meyimpang ke kanan. Demikian pula bila penyidik merah dipindah ke Emitor, jarum arus menyimpang ke kanan lagi. Selanjutnya analog dengan pangujian NPN.
Kita dapat menggunakan cara tersebut untuk mengetahui mana Basis, mana Kolektor dan mana Emitor suatu transistor dan juga apakah jenis transistor PNP atau NPN. Beberapa jenis multimeter dilengkapi pula fasilitas pengukur hFE, ialah salah parameter penting suatu transistor.
Dengan circuit seperti pada gambar, dapat diperkirakan bahan transistor. Pengujian cukup dilakukan antara Basis dan Emitor, bila voltage 0.2 V germanium dan bila 0.6 V maka kemungkinan silicon.
Menguji FET
Penentuan jenis FET dilakukan dengan jangkah pada x100 penyidik hitam pada Source dan merah pada Gate. Bila jarum menyimpang, maka janis FET adalah kanalP dan bila tidak, FET adalah kanal N.Kerusakan FET dapat diamati dengan rangkaian pada gambar. Jangkah diletakkan pada x1k atau x10k, potensio pada minimum, resistansi harus kecil. Bila potensio diputar ke kanan, resistansi harus tak terhingga. Bila peristiwa ini tidak terjadi, maka kemungkinan FET rusak.
Menguji UJT
Cara kerja UJT (Uni Junktion Transistor) adalah seperti switch, UJT kalau masih bisa on off berarti masih baik.Jangkah pada 10 VDC dan potensio pada minimum, tegangan harus kecil. Setelah potensio diputar pelan-pelan jarum naik sampai posisi tertentu dan kalau diputar terus jarum tetap disitu. Bila jarum diputar pelan-pelan ke arah minimum lagi, pada suatu posisi tertentu tiba-tiba jarum bergerak ke kiri dan bila putaran potensio diteruskan sampai minimum jarum tetap disitu. Bila peristiwa tersebut terjadi, maka UJT masih baik.
Jumat, 18 November 2011
Karakteristik Rangkaian Listrik Paralel Berikut Persamaan - Persamaan Yang Berlaku Di Dalamnya
Pada rangkaian paralel, berbagai alat dihubungkan dengan kawat paralel. Arus dibagi, sebagian mengalir ke satu alat, sebagian lainnya mengalir ke alat yang lain, dan seterusnya. Tegangan yang sama diberikan pada masing-masing alat, dan masing-masing alat dapat dimatikan dan dihidupkan sendiri-sendiri.
Tegangan pada rangkaian paralel
Baru saja kita pelajari bahwa tegangan supply pada sebuah rangkaian paralel adalah Sama
pada semua komponen. Hal ini bisa kita periksa dengan menyambung sejumlah voltmeter ke
dalam rangkaian paralel seperti yang diperlihatkan pada gambar.
Dengan kata lain, voltmeter selalu disambung secara paralel ke dalam rangkaian.
Dengan Voltmeter VT dalam Gambar tersebut di atas terbaca dengan total 12 V, dan kita
juga akan megetahui bahwa voltmeter V1, V2, dan V3 terbaca 12 V atau, dengan kata lain,
tegangan yang melewati semua komponen di dalam sebuah rangkaian paralel adalah sama.
Ini dapat diuraikan secara matematis sebagai berikut:
VT (V total) = V1 = V2 = V3, dan seterusnya.
Arus dalam rangkaian paralel
Jika kita melihat pada gambar di atas, kita Akan melihat bahwa arus total di kutub
positif akan terpisah melalui R1, R2, dan R3 dan kemudian akan menyatu kembali pada kutub
negatif. Arus total melalui kutub positif Akan Sama dengan arus total melalui kutub
negatif.Seperti telah kita pelajari bahwa jumlah saluran arus yang terjadi dalam rangkaian
paralel adalah sama dengan jumlah komponen yang diparalelkan. Sekarang, Mari kita
memperkenalkan beberapa ammeter ke dalam rangkaian untuk memeriksanya lebih lanjut.
Tahanan Paralel
Besarnya tahanan total (Rt)
Rt = 1
1/R1 + 1/R2 +1/R3
Untuk tahanan paralel sebanyak N tahanan dirumuskan
Rt = 1
1/R1 + 1/R2 +1/R3 + ...... + 1/Rn
Contoh
Rangkaian paralel seperti pada gambar di bawah ini:
R1 = 10 Ω
R2 = 20 Ω
R3 = 30 Ω
maka :
Rt = 1
1/R1 + 1/R2 + 1/R3
= 1
1/10 + 1/20 + 1/30
= 1
6/60 + 3/60 + 2/60
= 1
11/60
Rt = 60
11
Rt = 5,45 Ω
Tegangan pada rangkaian paralel
Baru saja kita pelajari bahwa tegangan supply pada sebuah rangkaian paralel adalah Sama
pada semua komponen. Hal ini bisa kita periksa dengan menyambung sejumlah voltmeter ke
dalam rangkaian paralel seperti yang diperlihatkan pada gambar.
Dengan kata lain, voltmeter selalu disambung secara paralel ke dalam rangkaian.
Dengan Voltmeter VT dalam Gambar tersebut di atas terbaca dengan total 12 V, dan kita
juga akan megetahui bahwa voltmeter V1, V2, dan V3 terbaca 12 V atau, dengan kata lain,
tegangan yang melewati semua komponen di dalam sebuah rangkaian paralel adalah sama.
Ini dapat diuraikan secara matematis sebagai berikut:
VT (V total) = V1 = V2 = V3, dan seterusnya.
Arus dalam rangkaian paralel
Jika kita melihat pada gambar di atas, kita Akan melihat bahwa arus total di kutub
positif akan terpisah melalui R1, R2, dan R3 dan kemudian akan menyatu kembali pada kutub
negatif. Arus total melalui kutub positif Akan Sama dengan arus total melalui kutub
negatif.Seperti telah kita pelajari bahwa jumlah saluran arus yang terjadi dalam rangkaian
paralel adalah sama dengan jumlah komponen yang diparalelkan. Sekarang, Mari kita
memperkenalkan beberapa ammeter ke dalam rangkaian untuk memeriksanya lebih lanjut.
Tahanan Paralel
Besarnya tahanan total (Rt)
Rt = 1
1/R1 + 1/R2 +1/R3
Untuk tahanan paralel sebanyak N tahanan dirumuskan
Rt = 1
1/R1 + 1/R2 +1/R3 + ...... + 1/Rn
Contoh
Rangkaian paralel seperti pada gambar di bawah ini:
R1 = 10 Ω
R2 = 20 Ω
R3 = 30 Ω
maka :
Rt = 1
1/R1 + 1/R2 + 1/R3
= 1
1/10 + 1/20 + 1/30
= 1
6/60 + 3/60 + 2/60
= 1
11/60
Rt = 60
11
Rt = 5,45 Ω
Karakteristik Rangkaian Listrik Seri Berikut Persamaan - Persamaan Yang Berlaku Di Dalamnya
Pada rangkaian seri, setiap alat listrik dihubungkan ke alat listrik lain sedemikian rupa sehingga arus yang sama mengalir ke seluruh alat. Karakteristik sebuah rangkaian seri adalah bahwa, jika salah satu alat dimatikan, rangkaian akan mati dan tidak ada arus yang mengalir di dalam alat manapun di dalam rangkaian tersebut.
Tahanan Seri
Besarnya tahanan total (Rt)
Rt = R1 + R2 + R3
Untuk tahan seri sebanyak N tahanan dapat dirumuskan
Rt = R1 + R2 + R3 + R4 + . . . + Rn
Catatan:
Rt lebih besar dari nilai resistor yang ada.
Contoh:
Tiga buah tahanan dihubungkan secara seri, R1 = 100Ω, R2 = 50 Ω, R3 = 75 Ω. Berapakah
besar nilai tahanan penggantinya.
Penyelesaian:
Rt = R1 + R2 + R3 + R4 + . . . + Rn
Rt = R1 + R2 + R3
Rt = 100 + 50 + 75
Rt = 225 Ω
Arus dalam rangkaian
Sebagaimana telah kita pelajari bahwa hanya ada satu jalur untuk arus mengalir ke dalam
rangkaian seri. Sekarang, Mari kita hubungkan sebuah ammeter secara seri ke rangkaian dan
perhatikan apa yang terjadi. Maka dengan demikian, ammeter harus selalu disambungkan
secara seri pada setiap rangkaian.
Jika arus yang mengalir dari catu daya (supply) listrik adalah 2 A - seperti pada Gambar 20 di
atas, maka kita melihat penunjukan pada ammeter At, A1, A2, dan A3, semua pembacaannya
sama, yaitu 2 A. Dengan kata lain, arus yang mengalir pada semua bagian rangkaian seri
tersebut adalah sama. Ini dapat ditulis dengan persamaan sebagai berikut:
It (I total) = I1 = I2 = I3, dan seterusya
Tegangan rangkaian seri
Sekarang mari kita perhatikan pembagian tegangan di dalam rangkaian seri dengan
memasang sebuah voltmeter pada saluran catu daya (supply) dan juga pada setiap komponen
R1, R2, dan R3 seperti tampak pada Gambar di bawah ini.
Jumlah tegangan yang terbaca oleh voltmeter E1, E2, E3dan E4, seperti terlihat pada gambar merupakan tegangan total atau tegangan sumber. Kita telah mempelajari bahwa jumlah total tegangan catu (supply) disebut VT sama besarnya.
Dalam kenyataannya, penjumlahan dari masing-masing drop tegangan dalam rangkaian seri
akan selalu sama dengan tegangan catu (supply) dan secara matematis ditulis sebagai berikut:
VT (Vtotal) = VT + VT + VT dan seterusnya.
Drop tegangan pada tahanan seri
ETOTAL = E1 + E2 + E3 + E4
R1 : R2 : R3 : R4 = E1 : E2 : E3 : E4
R1/R tot = E1/E tot
Contoh:
Tiga buah tahanan 2 Ω, 4 Ω dan 6 Ω dirangkaikan secara seri. Tegangan yang diberikan
pada tahanan tersebut - Vtotal = 12 volt
Hitung:
1. Tahanan total (Rt)
2. Arus dalam rangkaian (It)
3. Drop tegangan pada masing-masing tahanan
Penyelesaian:
1. Tahanan total
Rt= R1 + R2 + R3
Rt= 2 + 4 + 6
Rt=12Ω
2. Arus rangkaian
I = V/R
= 12/12
= 1A
3. Drop tegangan pada R1, R2, R3, (arus yang pada rangkaian adalah sama)
VR1= It x R1
VR1= 1 x 2
VR1= 2 V
VR2= It x R2
VR2= 1 x 4
VR2= 4 V
VR3= It x R3
VR3= 1 x 6
VR3= 6
Memeriksa total tegangan pada rangkaian seri
V = VR1 + VR2 + VR3 = 2 + 4+ 6 = 12
V = VR1 + VR2 + VR3
V = 2 + 4 +6 = 12 volt
Dari nilai tersebut telah sesuai dengan tegangan sumber.
Tahanan Seri
Besarnya tahanan total (Rt)
Rt = R1 + R2 + R3
Untuk tahan seri sebanyak N tahanan dapat dirumuskan
Rt = R1 + R2 + R3 + R4 + . . . + Rn
Catatan:
Rt lebih besar dari nilai resistor yang ada.
Contoh:
Tiga buah tahanan dihubungkan secara seri, R1 = 100Ω, R2 = 50 Ω, R3 = 75 Ω. Berapakah
besar nilai tahanan penggantinya.
Penyelesaian:
Rt = R1 + R2 + R3 + R4 + . . . + Rn
Rt = R1 + R2 + R3
Rt = 100 + 50 + 75
Rt = 225 Ω
Arus dalam rangkaian
Sebagaimana telah kita pelajari bahwa hanya ada satu jalur untuk arus mengalir ke dalam
rangkaian seri. Sekarang, Mari kita hubungkan sebuah ammeter secara seri ke rangkaian dan
perhatikan apa yang terjadi. Maka dengan demikian, ammeter harus selalu disambungkan
secara seri pada setiap rangkaian.
Jika arus yang mengalir dari catu daya (supply) listrik adalah 2 A - seperti pada Gambar 20 di
atas, maka kita melihat penunjukan pada ammeter At, A1, A2, dan A3, semua pembacaannya
sama, yaitu 2 A. Dengan kata lain, arus yang mengalir pada semua bagian rangkaian seri
tersebut adalah sama. Ini dapat ditulis dengan persamaan sebagai berikut:
It (I total) = I1 = I2 = I3, dan seterusya
Tegangan rangkaian seri
Sekarang mari kita perhatikan pembagian tegangan di dalam rangkaian seri dengan
memasang sebuah voltmeter pada saluran catu daya (supply) dan juga pada setiap komponen
R1, R2, dan R3 seperti tampak pada Gambar di bawah ini.
Jumlah tegangan yang terbaca oleh voltmeter E1, E2, E3dan E4, seperti terlihat pada gambar merupakan tegangan total atau tegangan sumber. Kita telah mempelajari bahwa jumlah total tegangan catu (supply) disebut VT sama besarnya.
Dalam kenyataannya, penjumlahan dari masing-masing drop tegangan dalam rangkaian seri
akan selalu sama dengan tegangan catu (supply) dan secara matematis ditulis sebagai berikut:
VT (Vtotal) = VT + VT + VT dan seterusnya.
Drop tegangan pada tahanan seri
ETOTAL = E1 + E2 + E3 + E4
R1 : R2 : R3 : R4 = E1 : E2 : E3 : E4
R1/R tot = E1/E tot
Contoh:
Tiga buah tahanan 2 Ω, 4 Ω dan 6 Ω dirangkaikan secara seri. Tegangan yang diberikan
pada tahanan tersebut - Vtotal = 12 volt
Hitung:
1. Tahanan total (Rt)
2. Arus dalam rangkaian (It)
3. Drop tegangan pada masing-masing tahanan
Penyelesaian:
1. Tahanan total
Rt= R1 + R2 + R3
Rt= 2 + 4 + 6
Rt=12Ω
2. Arus rangkaian
I = V/R
= 12/12
= 1A
3. Drop tegangan pada R1, R2, R3, (arus yang pada rangkaian adalah sama)
VR1= It x R1
VR1= 1 x 2
VR1= 2 V
VR2= It x R2
VR2= 1 x 4
VR2= 4 V
VR3= It x R3
VR3= 1 x 6
VR3= 6
Memeriksa total tegangan pada rangkaian seri
V = VR1 + VR2 + VR3 = 2 + 4+ 6 = 12
V = VR1 + VR2 + VR3
V = 2 + 4 +6 = 12 volt
Dari nilai tersebut telah sesuai dengan tegangan sumber.
Langganan:
Postingan (Atom)